Importance: Multiple strategies integrating magnetic resonance imaging (MRI) and clinical data have been proposed to determine the need for a prostate biopsy in men with suspected clinically significant prostate cancer (csPCa) (Gleason score ≥3 + 4). However, inconsistencies across different strategies create challenges for drawing a definitive conclusion.
Objective: To determine the optimal prostate biopsy decision-making strategy for avoiding unnecessary biopsies and minimizing the risk of missing csPCa by combining MRI Prostate Imaging Reporting & Data System (PI-RADS) and clinical data.
Data sources: PubMed, Ovid MEDLINE, Embase, Web of Science, and Cochrane Library from inception to July 1, 2022.
Study selection: English-language studies that evaluated men with suspected but not confirmed csPCa who underwent MRI PI-RADS followed by prostate biopsy were included. Each study had proposed a biopsy plan by combining PI-RADS and clinical data.
Data extraction and synthesis: Studies were independently assessed for eligibility for inclusion. Quality of studies was appraised using the Quality Assessment of Diagnostic Accuracy Studies 2 tool and the Newcastle-Ottawa Scale. Mixed-effects meta-analyses and meta-regression models with multimodel inference were performed. Reporting of this study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline.
Main outcomes and measures: Independent risk factors of csPCa were determined by performing meta-regression between the rate of csPCa and PI-RADS and clinical parameters. Yields of different biopsy strategies were assessed by performing diagnostic meta-analysis.
Results: The analyses included 72 studies comprising 36 366 patients. Univariable meta-regression showed that PI-RADS 4 (β-coefficient [SE], 7.82 [3.85]; P = .045) and PI-RADS 5 (β-coefficient [SE], 23.18 [4.46]; P < .001) lesions, but not PI-RADS 3 lesions (β-coefficient [SE], -4.08 [3.06]; P = .19), were significantly associated with a higher risk of csPCa. When considered jointly in a multivariable model, prostate-specific antigen density (PSAD) was the only clinical variable significantly associated with csPCa (β-coefficient [SE], 15.50 [5.14]; P < .001) besides PI-RADS 5 (β-coefficient [SE], 9.19 [3.33]; P < .001). Avoiding biopsy in patients with lesions with PI-RADS category of 3 or less and PSAD less than 0.10 (vs <0.15) ng/mL2 resulted in reducing 30% (vs 48%) of unnecessary biopsies (compared with performing biopsy in all suspected patients), with an estimated sensitivity of 97% (vs 95%) and number needed to harm of 17 (vs 15).
Conclusions and relevance: These findings suggest that in patients with suspected csPCa, patient-tailored prostate biopsy decisions based on PI-RADS and PSAD could prevent unnecessary procedures while maintaining high sensitivity.