Malaria blood stage parasites commit to either one of two distinct cellular fates while developing within erythrocytes of their mammalian host: they either undergo another round of asexual replication or they differentiate into nonreplicative transmissible gametocytes. Depending on the state of infection, either path may support or impair the ultimate goal of human-to-human transmission via the mosquito vector. Malaria parasites therefore evolved strategies to control investments into asexual proliferation versus gametocyte formation. Recent work provided fascinating molecular insight into shared and unique mechanisms underlying the control and environmental modulation of sexual commitment in the two most widely studied malaria parasite species, Plasmodium falciparum and P. berghei. With this review, we aim at placing these findings into a comparative mechanistic context.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.