Purpose: Corneal confocal microscopy is a noninvasive imaging technique to analyze corneal nerve fibers and corneal inflammatory cells (CICs). The amount of CICs is a potential biomarker of disease activity in chronic autoinflammatory diseases. To date, there are no standardized criteria for the morphological characterization of CICs. The aim was to establish a protocol for a standardized morphological classification of CICs based on a literature search and to test this protocol for applicability and reliability.
Methods: A systematic review of the literature about definitions of CICs was conducted. Existing morphological descriptions were translated into a structured algorithm and applied by raters. Subsequently, the protocol was optimized by reducing and defining the criteria of the cell types. The optimized algorithm was applied by 4 raters. The interrater reliability was calculated using Fleiss kappa (K).
Results: A systematic review of the literature revealed no uniform morphological criteria for the differentiation of the individual cell types in CICs. Our first protocol achieved only a low level of agreement between 3 raters (K = 0.09; 1062 rated cells). Our revised protocol was able to achieve a higher interrater reliability with 3 (K = 0.64; 471 rated cells) and 4 (K = 0.61; 628 rated cells) raters.
Conclusions: The indirect use of criteria from the literature leads to a high error rate. By clearly defining the individual cell types and standardizing the protocol, reproducible results were obtained, allowing the introduction of this protocol for the future evaluation of CICs in the corneal confocal microscopy.
Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.