In face-to-face interactions with infants, human adults exhibit a species-specific communicative signal. Adults present a distinctive "social ensemble": they use infant-directed speech (parentese), respond contingently to infants' actions and vocalizations, and react positively through mutual eye-gaze and smiling. Studies suggest that this social ensemble is essential for initial language learning. Our hypothesis is that the social ensemble attracts attentional systems to speech and that sensorimotor systems prepare infants to respond vocally, both of which advance language learning. Using infant magnetoencephalography (MEG), we measure 5-month-old infants' neural responses during live verbal face-to-face (F2F) interaction with an adult (social condition) and during a control (nonsocial condition) in which the adult turns away from the infant to speak to another person. Using a longitudinal design, we tested whether infants' brain responses to these conditions at 5 months of age predicted their language growth at five future time points. Brain areas involved in attention (right hemisphere inferior frontal, right hemisphere superior temporal, and right hemisphere inferior parietal) show significantly higher theta activity in the social versus nonsocial condition. Critical to theory, we found that infants' neural activity in response to F2F interaction in attentional and sensorimotor regions significantly predicted future language development into the third year of life, more than 2 years after the initial measurements. We develop a view of early language acquisition that underscores the centrality of the social ensemble, and we offer new insight into the neurobiological components that link infants' language learning to their early brain functioning during social interaction.
Keywords: MEG; attention; behavior; brain; infant; language development; magnetoencephalography; neuroscience; social interaction; theta oscillations.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.