Application of early warning signs to physiological contexts: a comparison of multivariate indices in patients on long-term hemodialysis

Front Netw Physiol. 2024 Mar 26:4:1299162. doi: 10.3389/fnetp.2024.1299162. eCollection 2024.

Abstract

Early warnings signs (EWSs) can anticipate abrupt changes in system state, known as "critical transitions," by detecting dynamic variations, including increases in variance, autocorrelation (AC), and cross-correlation. Numerous EWSs have been proposed; yet no consensus on which perform best exists. Here, we compared 15 multivariate EWSs in time series of 763 hemodialyzed patients, previously shown to present relevant critical transition dynamics. We calculated five EWSs based on AC, six on variance, one on cross-correlation, and three on AC and variance. We assessed their pairwise correlations, trends before death, and mortality predictive power, alone and in combination. Variance-based EWSs showed stronger correlations (r = 0.663 ± 0.222 vs. 0.170 ± 0.205 for AC-based indices) and a steeper increase before death. Two variance-based EWSs yielded HR95 > 9 (HR95 standing for a scale-invariant metric of hazard ratio), but combining them did not improve the area under the receiver-operating curve (AUC) much compared to using them alone (AUC = 0.798 vs. 0.796 and 0.791). Nevertheless, the AUC reached 0.825 when combining 13 indices. While some indicators did not perform overly well alone, their addition to the best performing EWSs increased the predictive power, suggesting that indices combination captures a broader range of dynamic changes occurring within the system. It is unclear whether this added benefit reflects measurement error of a unified phenomenon or heterogeneity in the nature of signals preceding critical transitions. Finally, the modest predictive performance and weak correlations among some indices call into question their validity, at least in this context.

Keywords: autocorrelation; biomarkers; critical transition; cross-correlation; mortality; network physiology; variance.

Grants and funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work was supported by the Canadian Institutes of Health Research (CIHR, grant #153011 awarded to AC) and by the Fonds de recherche du Québec–Société et culture (FRQSC, grant 2020-AUDC-270433 awarded to AC).