In the present research, novel lanthanide coordination compounds [DyL(PhCOO)(CH3OH)](ClO4)2·(CH3OH)2 (1) were characterized by the compression of 2,6-diformyl-4-methyl-phenol (dmp) and 1,3-diamino-2-propanol using benzoate as the secondary ligand, where L indicates the deprotonated macrocyclic ligand. Through the high structural rigidity driven by the coordination of the macrocyclic ligand formed by condensation in methanol solution and sodium benzoate with Dy(ClO4)3·6H2O, compound 1 exhibits outstanding cyan-emitting fluorescence performance and potential applications as a fluorescent material. Additionally, hyaluronic acid (HA)/ carboxymethyl chitosan (CMCS) hydrogels were prepared with loaded resveratrol metal-organic complexes according to the synthetic chemical approach. In biological study, we evaluated the effect of hydrogels on oxidative stress on human dermal fibroblasts. Examined by molecular docking simulation, the results showed that the binding interactions were from the phenol group, the carboxyl group and also the "-N=" group, indicating Dy metal complex has excellent biological capability.
Keywords: Coordination complex; Hydrogels; Molecular docking; Resveratrol.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.