Textile industry dye effluent contains a mixture of different kinds of dyes. Many times, photocatalysis is targeted as a solution for the treatment of dye effluent from the textile industry. Many researches have been published related to the photocatalysis of single textile dyes but in the real-world scenario, effluent is a mixture of dyes. Magnesium oxide (MgO) is used as a photocatalyst to treat a mixture (binary solution) of Methylene blue (MB) and Methylene violet (MV) along with individual MB and MV dyes in this article. MgO shows remarkable photocatalytic activity at about 93 and 88% for MB and MV dye in binary solution within 135 min. Furthermore, to study the influence of process parameters, experiments are designed with the help of the central composite design (CCD), and Response surface methodology (RSM) is used to study the interactions between parameters. For this study, five parameters are selected i.e., Photocatalyst dosage, initial concentration of both dyes, time of exposure to the light source, and pH of the binary solution. The photocatalytic process is also optimized and finally optimization of process parameters is validated with an experiment. The result of the validation experiment is very close to the predicted photocatalytic activity.
Keywords: Binary dye; Central composite design (CCD); Magnesium oxide (MgO); Parameter optimization; Parametric study; Photocatalysis; Response surface methodology (RSM).
© 2024. The Author(s).