The programmed death-ligand 1 (PD-L1) is a key mediator of immunosuppression in the tumor microenvironment. The expression of PD-L1 in cancer cells is useful for the clinical determination of an immune checkpoint blockade (ICB). However, the regulatory mechanism of the PD-L1 abundance remains incompletely understood. Here, we integrated the proteomics of 52 patients with solid tumors and examined immune cell infiltration to reveal PD-L1-related regulatory modules. Wiskott-Aldrich syndrome protein (WASP) was identified as a potential regulator of PD-L1 transcription. In two independent cohorts containing 164 cancer patients, WASP expression was significantly associated with PD-L1. High WASP expression contributed to immunosuppressive cell composition, including cells positive for immune checkpoints (PD1, CTLA4, TIGIT, and TIM3), FoxP3+ Treg cells, and CD163+ tumor-associated macrophages. Overexpression of WASP increased, whereas knockdown of WASP decreased the protein level of PD-L1 in cancer cells without alteration of PD-L1 protein stability. The WASP-mediated cell migration and invasion were markedly attenuated by the silence of PD-L1. Collectively, our data suggest that WASP is a potential regulator of PD-L1 and the WASP/PD-L1 axis is responsible for cell migration and an immunosuppressive microenvironment.
Keywords: PD-L1; WASP; pan-cancer proteomics.