Inhibitors against DNA Polymerase I Family of Enzymes: Novel Targets and Opportunities

Biology (Basel). 2024 Mar 22;13(4):204. doi: 10.3390/biology13040204.

Abstract

DNA polymerases replicate cellular genomes and/or participate in the maintenance of genome integrity. DNA polymerases sharing high sequence homology with E. coli DNA polymerase I (pol I) have been grouped in Family A. Pol I participates in Okazaki fragment maturation and in bacterial genome repair. Since its discovery in 1956, pol I has been extensively studied, primarily to gain deeper insights into the mechanism of DNA replication. As research on DNA polymerases advances, many novel functions of this group of polymerases are being uncovered. For example, human DNA polymerase θ (a Family A DNA pol) has been shown to synthesize DNA using RNA as a template, a function typically attributed to retroviral reverse transcriptase. Increased interest in drug discovery against pol θ has emerged due to its roles in cancer. Likewise, Pol I family enzymes also appear attractive as drug-development targets against microbial infections. Development of antimalarial compounds targeting apicoplast apPOL, an ortholog of Pol I, further extends the targeting of this family of enzymes. Here, we summarize reported drug-development efforts against Family A polymerases and future perspective regarding these enzymes as antibiotic targets. Recently developed techniques, such as artificial intelligence, can be used to facilitate the development of new drugs.

Keywords: DNA polymerase I; Polymerase θ; antibiotics; apicoplast; homologous recombination; reverse transcriptase.

Publication types

  • Review