Herein, we report on the antimicrobial photodynamic effect of polymeric nanoparticles containing the endogenous photosensitizer protoporphyrin IX. Compared to equivalent doses of the free photosensitizer, we demonstrated that the photodynamic antimicrobial efficacy of PLGA (polylactic-co-glycolic acid) nanoparticles containing protoporphyrin IX (PpIX) against pathogenic Staphylococcus aureus (S. aureus) is preserved after encapsulation, while photobleaching is reduced. In addition, compared to equivalent doses of the free porphyrin, we show that a reduction in the cytotoxicity in mammalian cell cultures is observed when encapsulated. Therefore, the encapsulation of protoporphyrin IX reduces its photodegradation, while the released photosensitizer maintains its ability to generate reactive oxygen species upon light irradiation. The polymeric nanoencapsulation promotes aqueous solubility for the hydrophobic PpIX, improves its photostability and reduces the cytotoxicity, while providing an extended release of this endogenous photosensitizer.
Keywords: PLGA; Staphylococcus aureus; encapsulation; photobleaching; photodynamic therapy; protoporphyrin IX.