Human and viral microRNAs (miRNAs) are involved in the regulation of gene transcription, and the establishment of their profiles in acute (AHI) and chronic (CHI) HIV infections may shed light on the pathogenetic events related to different phases of HIV disease. Next-generation sequencing (NGS) of miRNA libraries was performed, and the reads were used to analyze miRNA differential expression in the plasma with AHI and CHI. Functional analysis was then undertaken to investigate the biological processes characterizing the two phases of HIV infection. Except for hsa-miR-122-5p, which was found in 3.39% AHI vs. 0.18% CHI, the most represented human miRNAs were similarly represented in AHI and CHI. However, when considering the overall detected miRNAs in AHI and CHI, 15 displayed differential expression (FDR p < 0.05). Functional analysis identified 163 target mRNAs involved in promoting angiogenesis activation in AHI versus CHI through the action of hsa-miR10b-5p, hsa-miR1290, hsa-miR1-3p, and hsa-miR296-5p. The viral miRNAs detected, all belonging to herpesviruses, accounted for only 0.014% of total reads. The present data suggest that AHI patients exhibit strong innate immune activation through the upregulation of hsa-miR-122-5p and early activation of angiogenesis. More specific investigations are needed to study the role of viral miRNAs in HIV pathogenesis.
Keywords: acute HIV infection; miRNA expression; pathogenesis; transcription.