Novel Leptin-Cardiac TRH pathway responsible for the cardiac alterations in the Hyperleptinemic obesity

Mol Cell Biochem. 2024 Apr 27. doi: 10.1007/s11010-024-05008-x. Online ahead of print.

Abstract

The association between hypertension and obesity-induced cardiac damage is usually accepted. However, no studies have been focused on cardiac alterations in obesity, independently of blood pressure increase. It is well known that Cardiac TRH induces Left Ventricular Hypertrophy (LVH) and fibrosis, and its inhibition prevents the development of hypertrophy. Also, it has been described that the adiponectin leptin induces TRH expression. Thus, we hypothesized that in obesity, the increase in TRH induced by hyperleptinemia is responsible for LVH, until now mostly attributed to pressure load. We studied obese Agouti mice suffering from hypertension with hyperleptinemia and found a significant LVH development with increased TRH gene expression. Consequently, we found higher fibrotic (collagens and TGF-β) and hypertrophic markers (BNP and β-MHC) expression vs lean black controls. As pressure could explain these results, we treated obese mice with diuretic (hydrochlorothiazide 20 mg/kg/day) since weaning. Diuretic treatment was successful as the diuretic group was normotensive in contrast to control obese mice. Nevertheless, both groups showed LVH development, higher cardiac precursor TRH gene and peptide expressions and elevated fibrotic and hypertrophic markers expression, pointing out that obesity-induced LVH is not due to hypertension. In addition, we performed Cardiac TRH inhibition by specific siRNA injection compared to control siRNA treatment and evaluated cardiac damage. As expected, expressions and protein increase in hypertrophic and fibrotic markers observed in the AG mouse with the native cTRH system were not seen in the AG mouse with the cTRH silencing. Indeed, the AG + TRH-siRNA group showed hypertrophic markers expression and fibrosis measurements similar to the lean BL mice. On the whole, these results point out that the novel Leptin-Cardiac TRH pathway is responsible for the cardiac alterations present in hyperleptinemic obesity, independent of blood pressure, and cTRH long-term silencing since early stages totally prevent LVH development and cardiac fibrosis.

Keywords: Agouti; Fibrosis; Heart; Hyperleptinemia; Hypertrophy; Leptin; Mice; Obesity; TRH; Thyrotropin releasing hormone; siRNA.