Development of a Low-cost Epimysial Electromyography Electrode: A Simplified Workflow for Fabrication and Testing

J Vis Exp. 2024 Apr 12:(206). doi: 10.3791/66744.

Abstract

Electromyography (EMG) is a valuable diagnostic tool for detecting neuromuscular abnormalities. Implantable epimysial electrodes are commonly used to measure EMG signals in preclinical models. Although classical resources exist describing the principles of epimysial electrode fabrication, there is a sparsity of illustrative information translating electrode theory to practice. To remedy this, we provide an updated, easy-to-follow guide on fabricating and testing a low-cost epimysial electrode. Electrodes were made by folding and inserting two platinum-iridium foils into a precut silicone base to form the contact surfaces. Next, coated stainless steel wires were welded to each contact surface to form the electrode leads. Lastly, a silicone mixture was used to seal the electrode. Ex vivo testing was conducted to compare our custom-fabricated electrode to an industry standard electrode in a saline bath, where high levels of signal agreement (sine [intraclass correlation - ICC= 0.993], square [ICC = 0.995], triangle [ICC = 0.958]), and temporal-synchrony (sine [r = 0.987], square [r = 0.990], triangle [r= 0.931]) were found across all waveforms. Low levels of electrode impedance were also quantified via electrochemical impedance spectroscopy. An in vivo performance assessment was also conducted where the vastus lateralis muscle of a rat was surgically instrumented with the custom-fabricated electrode and signaling was acquired during uphill and downhill walking. As expected, peak EMG activity was significantly lower during downhill walking (0.008 ± 0.005 mV) than uphill (0.031 ± 0.180 mV, p = 0.005), supporting the validity of the device. The reliability and biocompatibility of the device were also supported by consistent signaling during level walking at 14 days and 56 days post implantation (0.01 ± 0.007 mV, 0.012 ± 0.007 mV respectively; p > 0.05) and the absence of histological inflammation. Collectively, we provide an updated workflow for the fabrication and testing of low-cost epimysial electrodes.

Publication types

  • Video-Audio Media
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Electrodes
  • Electrodes, Implanted*
  • Electromyography* / instrumentation
  • Electromyography* / methods
  • Equipment Design
  • Muscle, Skeletal / physiology
  • Rats
  • Workflow