Effectiveness of low-intensity pulsed ultrasound on osteoarthritis: molecular mechanism and tissue engineering

Front Med (Lausanne). 2024 Apr 17:11:1292473. doi: 10.3389/fmed.2024.1292473. eCollection 2024.

Abstract

Osteoarthritis (OA) is distinguished by pathological alterations in the synovial membrane, articular cartilage, and subchondral bone, resulting in physical symptoms such as pain, deformity, and impaired mobility. Numerous research studies have validated the effectiveness of low-intensity pulsed ultrasound (LIPUS) in OA treatment. The periodic mechanical waves generated by LIPUS can mitigate cellular ischemia and hypoxia, induce vibration and collision, produce notable thermal and non-thermal effects, alter cellular metabolism, expedite tissue repair, improve nutrient delivery, and accelerate the healing process of damaged tissues. The efficacy and specific mechanism of LIPUS is currently under investigation. This review provides an overview of LIPUS's potential role in the treatment of OA, considering various perspectives such as the synovial membrane, cartilage, subchondral bone, and tissue engineering. It aims to facilitate interdisciplinary scientific research and further exploration of LIPUS as a complementary technique to existing methods or surgery. Ongoing research is focused on determining the optimal dosage, frequency, timing, and treatment strategy of LIPUS for OA. Additional research is required to clarify the precise mechanism of action and potential impacts on cellular, animal, and human systems prior to its integration into therapeutic applications.

Keywords: low-intensity pulsed ultrasound; molecular mechanisms; osteoarthritis; therapeutic potential; tissue regeneration.

Publication types

  • Review

Grants and funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. Financial supports from the Program of Jiangsu science and technology Department (Nos. BK20211083 and BE2022737), Jiangsu social development project (No. BE2021673), the Program of Suzhou Health Commission (Nos. GSWS2020078 and SZXK202111), and Jiangsu Graduate Student Cultivation Innovative Engineering Graduate Research and Practice Innovation Program (No. SJCX23_0683).