Accessing Cyclobutane Polymers: Overcoming Synthetic Challenges via Efficient Continuous Flow [2 + 2] Photopolymerization

ACS Macro Lett. 2024 May 21;13(5):607-613. doi: 10.1021/acsmacrolett.4c00083. Epub 2024 May 2.

Abstract

We report an improved and efficient method to prepare well-defined, structurally complex truxinate cyclobutane polymers via a thioxanthone sensitized solution state [2 + 2] photopolymerization. Monomers with varying electron density and structure polymerize in good to excellent yields to afford a library of 42 polyesters. Monomers with internal olefin separation distances of greater than 5 Å undergo polymerization via intermolecular [2 + 2] photocycloaddition readily, as opposed to the intramolecular [2 + 2] photocycloaddition observed in monomers with olefins in closer proximity. Use of a continuous flow reactor decreases reaction time, increases polymer molecular weight, and decreases dispersity compared to batch reactions. Furthermore, under continuous flow, polymerization is readily scalable beyond what is possible with batch reactions. This advancement ushers truxinate cyclobutane-based polyesters, which have been historically limited to a few examples and only research scale quantities, to the forefront of development as new materials for potential use across industry sectors.