Background: Cardiac hypertrophy is the common pathological process of multiple cardiovascular diseases. However, the molecular mechanisms of cardiac hypertrophy are unclear. Long non-coding RNA (lncRNA), a newly discovered type of transcript that has been demonstrated to function as crucial regulators in the development of cardiovascular diseases. This study revealed a novel regulatory pathway of lncRNA in cardiac hypertrophy.
Methods: The cardiac hypertrophy models were established by transverse aortic constriction (TAC) in mice and angiotensin II (Ang II) in HL-1 cardiomyocytes. Adeno-associated virus 9 (AAV9) in vivo and lncRNA Gm15834 and shRNA plasmids in vitro were used to overexpress and knock down lncRNA Gm15834. The myocardial tissue structure, cardiomyocyte area, cardiac function, protein expressions, and binding of lncRNA Gm15834 and Src-associated substrate during mitosis of 68 KDa (Sam68) were detected by hematoxylin and eosin (HE) staining, immunofluorescence staining, echocardiography, western blot and RNA immunoprecipitation (RIP), respectively.
Results: In cardiac hypertrophy models, inhibiting lncRNA Gm15834 could decrease Sam68 expression and nuclear factor kappa-B (NF-κB) mediated inflammatory activities in vivo and in vitro, but overexpressing lncRNA Gm15834 showed the opposite results. RIP experiments validated the binding activities between lncRNA Gm15834 and Sam68. Overexpression of Sam68 could counteract the anti-hypertrophy effects of lncRNA Gm15834 knockdown. Meanwhile, in vivo inhibition of lncRNA Gm15834 could inhibit Sam68 expression, reduce NF-κB mediated inflammatory activity and attenuate cardiac hypertrophy.
Conclusion: Our study revealed a novel regulatory axis of cardiac hypertrophy, which comprised lncRNA Gm15834/Sam68/NF-κB/inflammation, shedding a new light for identifying therapy target of cardiac hypertrophy in clinic.
Keywords: Cardiac Hypertrophy; Inflammation; LncRNA Gm15834; NF-κB; Sam68.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.