Supercritical CO2 extrusion foaming of highly open-cell poly(lactic acid) foam with superior oil adsorption performance

Int J Biol Macromol. 2024 Jun;269(Pt 2):132138. doi: 10.1016/j.ijbiomac.2024.132138. Epub 2024 May 7.

Abstract

Addressing marine oil spills and industrial water pollution necessitates the development of eco-efficient oil-absorbing materials. With increasing concern for the environment, there is a consensus to decrease the use of petroleum-based polymers. Herein, lightweight poly(lactic acid) (PLA) blend foams with varying thermoplastic polyurethane (TPU) content were fabricated via a solvent-free, eco-friendly supercritical carbon dioxide (scCO2) extrusion foaming technology. The incorporation of TPU significantly enhanced the crystallization rate of PLA, with the semi-crystallization time of PT30 and PT50 blends at 105 °C exhibiting a reduction of 77.2 % and 47.9 %, respectively, compared to neat PLA. The resulting foams exhibited an open-cell structure with excellent selective oil adsorption capabilities. Notably, the PT30 foam achieved a remarkable maximum expansion ratio of 36.0, while the PT50 foam attained the highest open-cell content of 96.2 %. The PT50 foam demonstrated an outstanding adsorption capacity, spanning from 4.7 to 18.8 g/g for diverse oils and solvents, with rapid adsorption kinetics, reaching 94.9 % of the equilibrium adsorption capacity for CCl4 within just 1 min. Furthermore, the PT50 foam retained 95.2 % of its adsorption capacity for CCl4 over 10 adsorption-desorption cycles. This study presents a scalable and sustainable approach for large-scale production of high-performance, bio-based foams, facilitating efficient oil-water separation.

Keywords: Oil-absorption performance; Poly(lactic acid) open-cell foam; Supercritical CO(2) continuous foaming.

MeSH terms

  • Adsorption
  • Carbon Dioxide* / chemistry
  • Kinetics
  • Oils / chemistry
  • Polyesters* / chemistry
  • Polyurethanes / chemistry

Substances

  • poly(lactide)
  • Polyesters
  • Carbon Dioxide
  • Oils
  • Polyurethanes