In the present work, the influence of a corrosive environment and temperature on the corrosion resistance properties of duplex stainless steel S31803 was evaluated. The corrosive process was carried out using solutions of 1.5% HCl (m/m) and 6% FeCl3 (m/m), at temperatures of 25 and 50 °C. The microstructure of UNS S31803 duplex stainless steel is composed of two phases, ferrite and austenite, oriented in the rolling direction, containing a ferrite percentage of 46.2% in the rolling direction and 56.1% in the normal direction. Samples, when subjected to corrosive media and temperature, tend to decrease their mechanical property values. It was observed, in both corrosive media, that with increasing test temperature, there is an increase in the corrosion rate, both uniform and pitting. The sample in HCl solution obtained a uniform corrosion rate of 0.85% at 25 °C and 0.92% at 50 °C and pitting rates of 0.77% and 1.47% at the same temperatures, respectively. When tested in FeCl3 solution, it obtained uniform corrosion of 0.0006% and 0.93% and pitting of 0.53% and 18.5%, at the same temperatures. A reduction in dissolution potentials is also noted, thus characterizing greater corrosion in the samples with increasing temperature.
Keywords: duplex stainless steel; hardness; pitting corrosion; tension; uniform corrosion.