What is already known about this topic?: Sierra Leone, with a gross domestic product (GDP) per capita below $300 and significant poverty, ranks among the world's least developed countries (LDCs). Despite its modest population of 8.6 million, the nation reports approximately 2.6 million malaria cases annually. Previously, there has been no reporting on the malaria genome data from this country.
What is added by this report?: In this study, we present the first reported whole-genome sequence analysis of 19 high parasite-density Plasmodium falciparum isolates from Sierra Leone, providing insights into the genomic epidemiology of this high-prevalence area. We found a high degree of relatedness among infections and substantial genetic diversity, consistent with the gradual reduction in overall case numbers. Moreover, our whole-genome analysis revealed that, beyond drug-resistance genes, gene families related to blood cell invasion, immune evasion, and others are undergoing directional selection. This suggests that the population in Sierra Leone has developed a relatively strong acquired immunity.
What are the implications for public health practice?: The genomic data not only facilitate the creation of single nucleotide polymorphism barcodes for case tracking but also enable the analysis of evolving transmission dynamics and selection pressures. Additionally, the samples from Sierra Leone exhibited higher selective pressures on resistance genes compared to those from Asia, a trend not commonly observed in other African samples. This suggests that less stringent healthcare systems and inconsistent treatment strategies can subject parasites to increased drug pressure, thereby accelerating the development of resistant strains.
Keywords: Genome analysis; Plasmodium falciparum; Sierra Leone.
Copyright and License information: Editorial Office of CCDCW, Chinese Center for Disease Control and Prevention 2024.