The bulk photovoltaic effect (BPVE) offers an interesting approach to generate a steady photocurrent in a single-phase material under homogeneous illumination, and it has been extensively investigated in ferroelectrics exhibiting spontaneous polarization that breaks inversion symmetry. Flexoelectricity breaks inversion symmetry via a strain gradient in the otherwise nonpolar materials, enabling manipulation of ferroelectric order without an electric field. Combining these two effects, we demonstrate active mechanical control of BPVE in suspended 2-dimensional CuInP2S6 (CIPS) that is ferroelectric yet sensitive to electric field, which enables practical photodetection with an order of magnitude enhancement in performance. The suspended CIPS exhibits a 20-fold increase in photocurrent, which can be continuously modulated by either mechanical force or light polarization. The flexoelectrically engineered photodetection device, activated by air pressure and without any optimization, possesses a responsivity of 2.45 × 10-2 A/W and a detectivity of 1.73 × 1011 jones, which are superior to those of ferroelectric-based photodetection and comparable to those of the commercial Si photodiode.
Keywords: Bulk photovoltaic effect; Ferroelectricity; Flexoelectric engineering; Photodetector; Two-dimensional CuInP2S6.