In the pursuit of alternatives for conventional diesel, sourced from non-renewable fossil fuel, biodiesel has gained attentions for its intrinsic benefits. However, the commercial production process for biodiesel is still not sufficiently competitive. This review analyses microalgal lipid, one of the important sources of biodiesel, and its cultivation techniques with recent developments in the technical aspects. In fact, the microalgal lipids are the third generation feedstock, used for biodiesel production after its benefits outweigh that of edible vegetable oils (first generation) and non-edible oils (second generation). The critical factors influencing microalgal growth and its lipid production and accumulation are also discussed. Following that is the internal enhancement for cellular lipid production through genetic engineering. Moreover, the microalgae cultivation data modelling was also rationalized, with a specific focus on growth kinetic models that allow for the prediction and optimization of lipid production. Finally, the machine learning and environmental impact analysis are as well presented as important aspects to consider in fulfilling the prime objective of commercial sustainability to produce microalgal biodiesel.
Keywords: Biodiesel; Environmental impact; Lipid; Machine learning; Microalgae; Model.
Copyright © 2024 Elsevier Ltd. All rights reserved.