Background: Cadmium (Cd) is a heavy metal with extremely harmful toxic effects on the brain. Quetiapine (QTP) has unique neuroprotective effects with anti-inflammatory and antioxidant actions. However, its neuroprotective effect against Cd-induced neurotoxicity has not been previously studied.
Methods: QTP was administered in 10 and 20 mg/kg doses, while Cd was given in a dose of 6.5 mg/kg.
Results: In our study, QTP dose-dependently attenuated neuronal injury by downregulating p-tau and β-amyloid. QTP potently attenuates histological abrasions induced by Cd. QTP counteracted oxidative injury by decreasing neuronal MDA and increased GSH levels mediated by downregulating Keap1 and upregulating Nrf2 and HO-1. QTP mitigated inflammation by decreasing MPO and NO2 and neuronal cytokines TNF-α and IL-1β and upregulating IL-10 levels mediated by NF-κB downregulation. Additionally, QTP counteracted Cd-induced pyroptosis by downregulating caspase-1, ASC, and NLRP3 protein levels.
Conclusion: In conclusion, QTP mitigates neurotoxicity induced by Cd through suppression of inflammation, pyroptosis, and oxidative stress by controlling the NF-κB, Keap1/Nrf2, and pyroptosis signals.
Keywords: Cadmium; Keap1/Nrf2; NF-κB; Pyroptosis; Quetiapine.
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.