In this study, chitosan, polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) were used to create ternary blends reinforced with organically modified montmorillonite nanoclay. Tramadol was used as a model drug to assess the efficacy of these ternary blends as drug delivery systems. The current work demonstrated the highly controlled release of tramadol via transdermal administration. The results of the FTIR investigation revealed the compatibility of the blending components. Among non-drug-loaded formulations, MC6 is the most stable with a 17.6% weight residue at 505 °C and MC11 is the most stable of all the drug-loaded and non-drug-loaded formulations with a weight residue of 22.0% at 505 °C. The XRD studies of the prepared formulations showed crystalline behavior. However, the SEM analysis revealed that no gaps or mixing components were uniformly dispersed in the nanocomposites. Pharmaceutical tests, such as swelling, dissolution, and permeation rates, revealed a strong influence of the PVA concentration. There was a uniform distribution of drug throughout the films with maximum encapsulation efficiency found for MC7 (96.09 ± 0.31) and minimum encapsulation efficiency for MC11 (90.56 ± 0.34)%. Compared to the sodium acetate (pH 4.5) and potassium phosphate buffers (pH 6.8) the swelling and erosion were higher in hydrochloric acid buffer (pH 1.2). An increase in PVA concentration (or decrease in PVP concentration) increases the swelling, dissolution, and permeation rates. In addition, erosion increased with increasing PVP concentration. Furthermore, the nanoclay-reinforced composite showed high permeation. Based on the obtained results, it can be concluded that the produced nanocomposite could be used as an efficient transdermal drug delivery system.
This journal is © The Royal Society of Chemistry.