Aim: To conduct a post hoc subgroup analysis of patients with type 2 diabetes (T2D) from the RECAP study, who were treated with sodium-glucose cotransporter-2 (SGLT2) inhibitor and glucagon-like peptide 1 receptor agonist (GLP-1RA) combination therapy, focusing only on those patients who had chronic kidney disease (CKD), to examine whether the composite renal outcome differed between those who received SGLT2 inhibitor treatment first and those who received a GLP-1RA first.
Methods: We included 438 patients with CKD (GLP-1RA-first group, n = 223; SGLT2 inhibitor-first group, n = 215) from the 643 T2D patients in the RECAP study. The incidence of the composite renal outcome, defined as progression to macroalbuminuria and/or a ≥50% decrease in estimated glomerular filtration rate (eGFR), was analysed using a propensity score (PS)-matched model. Furthermore, we calculated the win ratio for these composite renal outcomes, which were weighted in the following order: (1) both a ≥50% decrease in eGFR and progression to macroalbuminuria; (2) a decrease in eGFR of ≥50% only; and (3) progression to macroalbuminuria only.
Results: Using the PS-matched model, 132 patients from each group were paired. The incidence of renal composite outcomes did not differ between the two groups (GLP-1RA-first group, 10%; SGLT2 inhibitor-first group, 17%; odds ratio 1.80; 95% confidence interval [CI] 0.85 to 4.26; p = 0.12). The win ratio of the GLP-1RA-first group versus the SGLT2 inhibitor-first group was 1.83 (95% CI 1.71 to 1.95; p < 0.001).
Conclusion: Although the renal composite outcome did not differ between the two groups, the win ratio of the GLP-1RA-first group versus the SGLT2 inhibitor-first group was significant. These results suggest that, in GLP-1RA and SGLT2 inhibitor combination therapy, the addition of an SGLT2 inhibitor to baseline GLP-1RA treatment may lead to more favourable renal outcomes.
Keywords: combination treatment; glucagon‐like peptide 1 receptor agonist; preceding drug; renal outcome; sodium‐glucose cotransporter 2 inhibitors.
© 2024 John Wiley & Sons Ltd.