Photoinitiated Transient Self-Assembly in a Catalytically Driven Chemical Reaction Cycle

Angew Chem Int Ed Engl. 2024 Aug 12;63(33):e202406931. doi: 10.1002/anie.202406931. Epub 2024 Jun 30.

Abstract

Chemically fueled chemical reaction networks (CRNs) are essential in controlling dissipative self-assembly. A key challenge in the field is to store chemical fuel-precursors or "pre-fuels" in the system that are converted into activating or deactivating fuels in a catalytically controlled CRN. In addition, real-time control over catalysis in a CRN by light is highly desirable, but so far not yet achieved. Here we show a catalytically driven CRN that is photoinitiated with 450 nm light, producing activated monomers that go on to perform transient self-assembly. Monomer activation proceeds via photoredox catalysis, converting the monomer alcohol groups into the corresponding aldehydes that self-assemble into large supramolecular fibers. Monomer deactivation is achieved by organometallic catalysis that relies on pre-fuel hydrolysis to release formate (i.e. the deactivating fuel). Additionally, irradiation with 305 nm light accelerates the release of formate by photo-uncaging the pre-fuel, leading to a factor of ca. 2 faster deactivation of the monomer. Overall, we show transient self-assembly upon visible light photoactivation, and tunable life-times by ultraviolet light.

Keywords: Dissipative self-assembly; chemical fuels; chemical reaction cycles; out-of-equilibrium; photoredox catalysis.