Reliability of power output, maximal rate of capillary blood lactate accumulation, and phosphagen contribution time following 15-s sprint cycling in amateur cyclists

Physiol Rep. 2024 May;12(10):e16086. doi: 10.14814/phy2.16086.

Abstract

Based on Mader's mathematical model, the rate of capillary blood lactate concentration (νLamax) following intense exercise is thought to reflect the maximal glycolytic rate. We aimed to investigate the reliability of important variables of Mader's model (i.e. power output, lactate accumulation, predominant phosphagen contribution time frames (tP Cr)) and resulting νLamax values derived during and after a 15-s cycling sprint. Fifty cyclists performed a 15-s all-out sprint test on a Cyclus2 ergometer three times. The first sprint test was considered a familiarization trial. Capillary blood was sampled before and every minute (for 8 min) after the sprint to determine νLamax. Test-retest analysis between T2 and T3 revealed excellent reliability for power output (Pmean and Ppeak; ICC = 0.99, 0.99), ∆La and νLamax with tPCr of 3.5 s (ICC = 0.91, 0.91). νLamax calculated with tPCr = tP peak (ICC = 0.87) and tP Cr = tPpeak-3.5% (ICC = 0.79) revealed good reliability. tPpeak and tPpeak-3.5% revealed only poor and moderate reliability (ICC = 0.41, 0.52). Power output and ∆La are reliable parameters in the context of this test. Depending on tPCr, reliability of νLamax varies considerably with tP Cr of 3.5 s showing excellent reliability. We recommend standardization of this type of testing especially tP Cr.

Keywords: ATP; alactic; energy; high‐intensity; metabolism; muscle.

MeSH terms

  • Adult
  • Bicycling* / physiology
  • Capillaries / metabolism
  • Capillaries / physiology
  • Exercise Test / methods
  • Female
  • Humans
  • Lactic Acid* / blood
  • Male
  • Reproducibility of Results
  • Young Adult

Substances

  • Lactic Acid