Application of Skimmed-Milk Flocculation Method for Wastewater Surveillance of COVID-19 in Kathmandu, Nepal

Pathogens. 2024 Apr 29;13(5):366. doi: 10.3390/pathogens13050366.

Abstract

Wastewater surveillance (WS) has been used globally as a complementary tool to monitor the spread of coronavirus disease 2019 (COVID-19) throughout the pandemic. However, a concern about the appropriateness of WS in low- and middle-income countries (LMICs) exists due to low sewer coverage and expensive viral concentration methods. In this study, influent wastewater samples (n = 63) collected from two wastewater treatment plants (WWTPs) of the Kathmandu Valley between March 2021 and February 2022 were concentrated using the economical skimmed-milk flocculation method (SMFM). The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was tested by qPCR using assays that target the nucleocapsid (N) and envelope (E) genes. Overall, 84% (53/63) of the total samples were positive for SARS-CoV-2 according to at least one of the tested assays, with concentrations ranging from 3.5 to 8.3 log10 gene copies/L, indicating the effectiveness of the SMFM. No correlation was observed between the total number of COVID-19 cases and SARS-CoV-2 RNA concentrations in wastewater collected from the two WWTPs (p > 0.05). This finding cautions the prediction of future COVID-19 waves and the estimation of the number of COVID-19 cases based on wastewater concentration in settings with low sewer coverage by WWTPs. Future studies on WS in LMICs are recommended to be conducted by downscaling to sewer drainage, targeting a limited number of houses. Overall, this study supports the notion that SMFM can be an excellent economical virus-concentrating method for WS of COVID-19 in LMICs.

Keywords: COVID-19; SARS-CoV-2; virus-concentrating method; wastewater-based epidemiology.

Grants and funding

This research received funding from Path (GAT.583722-01708901-CRT).