In this paper, a comprehensive study of the mechanical properties of selective laser sintered polyamide components is presented, for various different process parameters as well as environmental testing conditions. For the optimization of the static and dynamic mechanical load behavior, different process parameters, e.g., laser power, scan speed, and build temperature, were varied, defining an optimal parameter combination. First, the influence of the different process parameters was tested, leading to a constant energy density for different combinations. Due to similarities in mechanical load behavior, the energy density was identified as a decisive factor, mostly independent of the input parameters. Thus, secondly, the energy density was varied by the different parameters, exhibiting large differences for all levels of fatigue behavior. An optimal parameter combination of 18 W for the laser power and a scan speed of 2666 mm/s was determined, as a higher energy density led to the best results in static and dynamic testing. According to this, the variation in build temperature was investigated, leading to improvements in tensile strength and fatigue strength at higher build temperatures. Furthermore, different ambient temperatures during testing were evaluated, as the temperature-dependent behavior of polymers is of high importance for industrial applications. An increased ambient temperature as well as active cooling during testing was examined, having a significant impact on the high cycle fatigue regime and on the endurance limit.
Keywords: fatigue behavior; fatigue strength; selective laser sintering; tensile strength.