Metabolic predictors of COVID-19 mortality and severity: a survival analysis

Front Immunol. 2024 May 10:15:1353903. doi: 10.3389/fimmu.2024.1353903. eCollection 2024.

Abstract

Introduction: The global healthcare burden of COVID-19 pandemic has been unprecedented with a high mortality. Metabolomics, a powerful technique, has been increasingly utilized to study the host response to infections and to understand the progression of multi-system disorders such as COVID-19. Analysis of the host metabolites in response to SARS-CoV-2 infection can provide a snapshot of the endogenous metabolic landscape of the host and its role in shaping the interaction with SARS-CoV-2. Disease severity and consequently the clinical outcomes may be associated with a metabolic imbalance related to amino acids, lipids, and energy-generating pathways. Hence, the host metabolome can help predict potential clinical risks and outcomes.

Methods: In this prospective study, using a targeted metabolomics approach, we studied the metabolic signature in 154 COVID-19 patients (males=138, age range 48-69 yrs) and related it to disease severity and mortality. Blood plasma concentrations of metabolites were quantified through LC-MS using MxP Quant 500 kit, which has a coverage of 630 metabolites from 26 biochemical classes including distinct classes of lipids and small organic molecules. We then employed Kaplan-Meier survival analysis to investigate the correlation between various metabolic markers, disease severity and patient outcomes.

Results: A comparison of survival outcomes between individuals with high levels of various metabolites (amino acids, tryptophan, kynurenine, serotonin, creatine, SDMA, ADMA, 1-MH and carnitine palmitoyltransferase 1 and 2 enzymes) and those with low levels revealed statistically significant differences in survival outcomes. We further used four key metabolic markers (tryptophan, kynurenine, asymmetric dimethylarginine, and 1-Methylhistidine) to develop a COVID-19 mortality risk model through the application of multiple machine-learning methods.

Conclusions: Metabolomics analysis revealed distinct metabolic signatures among different severity groups, reflecting discernible alterations in amino acid levels and perturbations in tryptophan metabolism. Notably, critical patients exhibited higher levels of short chain acylcarnitines, concomitant with higher concentrations of SDMA, ADMA, and 1-MH in severe cases and non-survivors. Conversely, levels of 3-methylhistidine were lower in this context.

Keywords: COVID-19; biomarkers; critical; metabolites; mortality; severe.

MeSH terms

  • Aged
  • Biomarkers / blood
  • COVID-19* / blood
  • COVID-19* / metabolism
  • COVID-19* / mortality
  • Female
  • Humans
  • Male
  • Metabolome
  • Metabolomics* / methods
  • Middle Aged
  • Prospective Studies
  • SARS-CoV-2*
  • Severity of Illness Index*
  • Survival Analysis
  • Tryptophan / blood
  • Tryptophan / metabolism

Substances

  • Biomarkers
  • Tryptophan

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the by the QU internal Grant QU-ERG-CMED-2020-3; QU internal grant (QUCG-CMED-21/22-2); and NPRP11S-1212-170092 grant.