Measurement properties of movement smoothness metrics for upper limb reaching movements in people with moderate to severe subacute stroke

J Neuroeng Rehabil. 2024 May 29;21(1):90. doi: 10.1186/s12984-024-01382-1.

Abstract

Background: Movement smoothness is a potential kinematic biomarker of upper extremity (UE) movement quality and recovery after stroke; however, the measurement properties of available smoothness metrics have been poorly assessed in this group. We aimed to measure the reliability, responsiveness and construct validity of several smoothness metrics.

Methods: This ancillary study of the REM-AVC trial included 31 participants with hemiparesis in the subacute phase of stroke (median time since stroke: 38 days). Assessments performed at inclusion (Day 0, D0) and at the end of a rehabilitation program (Day 30, D30) included the UE Fugl Meyer Assessment (UE-FMA), the Action Research Arm Test (ARAT), and 3D motion analysis of the UE during three reach-to-point movements at a self-selected speed to a target located in front at shoulder height and at 90% of arm length. Four smoothness metrics were computed: a frequency domain smoothness metric, spectral arc length metric (SPARC); and three temporal domain smoothness metrics (TDSM): log dimensionless jerk (LDLJ); number of submovements (nSUB); and normalized average rectified jerk (NARJ).

Results: At D30, large clinical and kinematic improvements were observed. Only SPARC and LDLJ had an excellent reliability (intra-class correlation > 0.9) and a low measurement error (coefficient of variation < 10%). SPARC was responsive to changes in movement straightness (rSpearman=0.64) and to a lesser extent to changes in movement duration (rSpearman=0.51) while TDSM were very responsive to changes in movement duration (rSpearman>0.8) and not to changes in movement straightness (non-significant correlations). Most construct validity hypotheses tested were verified except for TDSM with low correlations with clinical metrics at D0 (rSpearman<0.5), ensuing low predictive validity with clinical metrics at D30 (non-significant correlations).

Conclusions: Responsiveness and construct validity of TDSM were hindered by movement duration and/or noise-sensitivity. Based on the present results and concordant literature, we recommend using SPARC rather than TDSM in reaching movements of uncontrolled duration in individuals with spastic paresis after stroke.

Trial registration: NCT01383512, https://clinicaltrials.gov/ , June 27, 2011.

Keywords: Kinematics; Measurement properties; Reaching; Smoothness; Stroke.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Biomechanical Phenomena
  • Female
  • Humans
  • Male
  • Middle Aged
  • Movement* / physiology
  • Paresis / etiology
  • Paresis / physiopathology
  • Paresis / rehabilitation
  • Recovery of Function / physiology
  • Reproducibility of Results
  • Stroke Rehabilitation* / methods
  • Stroke* / complications
  • Stroke* / physiopathology
  • Upper Extremity* / physiopathology

Associated data

  • ClinicalTrials.gov/NCT01383512