Photoelectron spectrum of the pyridyl radical

Phys Chem Chem Phys. 2024 Jun 19;26(24):17042-17047. doi: 10.1039/d4cp00688g.

Abstract

We report the photoelectron spectrum of the pyridyl radical (C5H4N), a species of interest in astrochemistry and combustion. The radicals were produced via hydrogen abstraction in a fluorine discharge and ionized with synchrotron radiation. Mass-selected slow photoelectron spectra of the products were obtained from photoelectron-photoion coincidence spectra. A Franck-Condon simulation based on computed geometries and vibrational frequencies identified contributions of the o- and p-pyridyl radicals. For the o-isomer an adiabatic ionisation energy of 7.70 eV was obtained, in excellent agreement with a computed value of 7.72 eV. The spectrum of o-pyridyl is characterized by a long progression in an in-plane bending mode and the N-C stretch that contains the radical site.