A fundamental necessity in advancing sustainable crop production lies in the establishment of a reliable technique for assessing soil health. Soil health assessment is a challenge considering multiple interactions among dynamic indicators within various management strategies and agroecological contexts. Hence a study was conducted to determine the soil health variables, quantify the soil health index (SHI), and validate them with the productivity of rice (Oryza sativa L.)-wheat (Triticum aestivum L.) system for the Indo Gangetic basin of Bihar, India, under four contrasting agro-climatic zones (ACZ-I, II, IIIA & IIIB). For this study, 100 soil samples (0-15 cm) from each ACZ with a total of 400 soil samples were obtained for analyzing 20 soil health variables (soil physical, chemical, and biological properties). To identify SHI and important soil health variables, principal component analysis (PCA) was employed. Apart from specific variables, soil pH, soil organic carbon (SOC), available Zn and available water capacity (AWC) were identified as common indicators for the four ACZs. Results revealed that under the rice-wheat cropping system, ACZ-IIIB soils had a higher SHI (0.19-0.70) than other ACZs. SHI of ACZ-IIIB was significantly influenced by SOC (19.32 %), available P (10.52 %), clay (10.43 %), pH (10.80 %), and soil respiration (9.8 %). The strong relationship between SHI and system productivity of the rice-wheat (R2 = 0.79) system indicates that the selected soil health variables are representative of good soil health. It is concluded that ACZ-specific SHIs are a promising strategy for evaluating and monitoring soil health to achieve the United Nations' Sustainable Development Goal of 'zero hunger' by 2030.
Keywords: Agro-climatic zone; Principal component analysis; Rice-wheat cropping system; Soil health; Soil health index.
Copyright © 2024 Elsevier B.V. All rights reserved.