Background: An increasing number of women are choosing mastectomy and subpectoral implant (SI) breast reconstruction over breast-conserving therapy (BCT). It is unclear to what extent these procedures differ in their effect on the pectoralis major (PM). The purpose of this study was to assess the impact of choosing BCT or SI breast reconstruction on PM function.
Methods: Ultrasound shear wave elastography images were acquired from the PM fiber regions and surface electromyography obtained activity from six shoulder muscles, while 14 BCT participants, 14 SI participants, and 14 age-matched controls remained at rest or generated submaximal shoulder torques.
Results: BCT and SI participants were significantly weaker in shoulder adduction, while BCT participants were also weaker in internal and external rotation (all p ≤ 0.003). PM function was altered following either BCT or SI. In all treatment groups, the clavicular fiber region contributed primarily to flexion, and the sternocostal primarily contributed to adduction. However, healthy participants utilized the clavicular region more during adduction and the sternocostal region more during flexion when compared to BCT or SI participants (all p ≤ 0.049). The still intact clavicular region increased its contributions to flexion torques in SI participants compared to controls (p = 0.016). Finally, BCT and SI participants compensated for changes in PM function using synergistic shoulder musculature.
Conclusion: Both BCT and SI breast reconstruction result in significant long-term upper extremity strength deficits. Our results suggest changes to the underlying function of the PM and the adoption of unique but inadequate neuromuscular compensation strategies drive these deficits.
Keywords: Motor Control; Muscle Function; Musculoskeletal Adaptation; Shear Wave Elastography; Shoulder Biomechanics.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.