Evolutionary models of quantitative traits often assume trade-offs between beneficial and detrimental traits, requiring modelers to specify a function linking costs to benefits. The choice of trade-off function is often consequential; functions that assume diminishing returns (accelerating costs) typically lead to single equilibrium genotypes, while decelerating costs often lead to evolutionary branching. Despite their importance, we still lack a strong theoretical foundation to base the choice of trade-off function. To address this gap, we explore how trade-off functions can emerge from the genetic architecture of a quantitative trait. We developed a multi-locus model of disease resistance, assuming each locus had random antagonistic pleiotropic effects on resistance and fecundity. We used this model to generate genotype landscapes and explored how additive versus epistatic genetic architectures influenced the shape of the trade-off function. Regardless of epistasis, our model consistently led to accelerating costs. We then used our genotype landscapes to build an evolutionary model of disease resistance. Unlike other models with accelerating costs, our approach often led to genetic polymorphisms at equilibrium. Our results suggest that accelerating costs are a strong null model for evolutionary trade-offs and that the eco-evolutionary conditions required for polymorphism may be more nuanced than previously believed.
Keywords: Pareto front; accelerating costs; disease resistance; host-pathogen; polymorphism; trade-offs.