Creation of Standardized Common Data Elements for Diagnostic Tests in Infectious Disease Studies: Semantic and Syntactic Mapping

J Med Internet Res. 2024 Jun 10:26:e50049. doi: 10.2196/50049.

Abstract

Background: It is necessary to harmonize and standardize data variables used in case report forms (CRFs) of clinical studies to facilitate the merging and sharing of the collected patient data across several clinical studies. This is particularly true for clinical studies that focus on infectious diseases. Public health may be highly dependent on the findings of such studies. Hence, there is an elevated urgency to generate meaningful, reliable insights, ideally based on a high sample number and quality data. The implementation of core data elements and the incorporation of interoperability standards can facilitate the creation of harmonized clinical data sets.

Objective: This study's objective was to compare, harmonize, and standardize variables focused on diagnostic tests used as part of CRFs in 6 international clinical studies of infectious diseases in order to, ultimately, then make available the panstudy common data elements (CDEs) for ongoing and future studies to foster interoperability and comparability of collected data across trials.

Methods: We reviewed and compared the metadata that comprised the CRFs used for data collection in and across all 6 infectious disease studies under consideration in order to identify CDEs. We examined the availability of international semantic standard codes within the Systemized Nomenclature of Medicine - Clinical Terms, the National Cancer Institute Thesaurus, and the Logical Observation Identifiers Names and Codes system for the unambiguous representation of diagnostic testing information that makes up the CDEs. We then proposed 2 data models that incorporate semantic and syntactic standards for the identified CDEs.

Results: Of 216 variables that were considered in the scope of the analysis, we identified 11 CDEs to describe diagnostic tests (in particular, serology and sequencing) for infectious diseases: viral lineage/clade; test date, type, performer, and manufacturer; target gene; quantitative and qualitative results; and specimen identifier, type, and collection date.

Conclusions: The identification of CDEs for infectious diseases is the first step in facilitating the exchange and possible merging of a subset of data across clinical studies (and with that, large research projects) for possible shared analysis to increase the power of findings. The path to harmonization and standardization of clinical study data in the interest of interoperability can be paved in 2 ways. First, a map to standard terminologies ensures that each data element's (variable's) definition is unambiguous and that it has a single, unique interpretation across studies. Second, the exchange of these data is assisted by "wrapping" them in a standard exchange format, such as Fast Health care Interoperability Resources or the Clinical Data Interchange Standards Consortium's Clinical Data Acquisition Standards Harmonization Model.

Keywords: CDE; COVID-19; CRF; FHIR; LOINC; SNOMED CT; ZIKV; case report form; clinical data; common element; core data element; covid19; data model; diagnostic test; infectious disease; interoperability; mpox; patient data; semantic standards; syntactic interoperability; virus infection.

MeSH terms

  • Common Data Elements
  • Communicable Diseases* / diagnosis
  • Humans
  • Semantics*