The emergence of SARS-CoV-2 variants with increased fitness has had a strong impact on the epidemiology of COVID-19, with the higher effective reproduction number of the viral variants leading to new epidemic waves. Tracking such variants and their genetic signatures, using data collected through genomic surveillance, is therefore crucial for forecasting likely surges in incidence. Current methods of estimating fitness advantages of variants rely on tracking the changing proportion of a particular lineage over time, but describing successful lineages in a rapidly evolving viral population is a difficult task. We propose a method of estimating fitness gains directly from nucleotide information generated by genomic surveillance, without a priori assigning isolates to lineages from phylogenies, based solely on the abundance of single nucleotide polymorphisms (SNPs). The method is based on mapping changes in the genetic population structure over time. Changes in the abundance of SNPs associated with periods of increasing fitness allow for the unbiased discovery of new variants, thereby obviating a deliberate lineage assignment and phylogenetic inference. We conclude that the method provides a fast and reliable way to estimate fitness advantages of variants without the need for a priori assigning isolates to lineages.
Keywords: COVID-19; SARS-CoV-2; fitness advantage; genomic surveillance.