Dynamics of carbon sequestration in vegetation affected by large-scale surface coal mining and subsequent restoration

Sci Rep. 2024 Jun 12;14(1):13479. doi: 10.1038/s41598-024-64381-1.

Abstract

Surface coal development activities include mining and ecological restoration, which significantly impact regional carbon sinks. Quantifying the dynamic impacts on carbon sequestration in vegetation (VCS) during coal development activities has been challenging. Here, we provided a novel approach to assess the dynamics of VCS affected by large-scale surface coal mining and subsequent restoration. This approach effectively overcomes the limitations imposed by the lack of finer scale and long-time series data through scale transformation. We found that mining activities directly decreased VCS by 384.63 Gg CO2, while restoration activities directly increased 192.51 Gg CO2 between 2001 and 2022. As of 2022, the deficit in VCS at the mining areas still had 1966.7 Gg CO2. The study highlights that complete restoration requires compensating not only for the loss in the year of destruction but also for the ongoing accumulation of losses throughout the mining lifecycle. The findings deepen insights into the intricate relationship between coal resource development and ecological environmental protection.