Mitochondrial transfer from Adipose stem cells to breast cancer cells drives multi-drug resistance

J Exp Clin Cancer Res. 2024 Jun 14;43(1):166. doi: 10.1186/s13046-024-03087-8.

Abstract

Background: Breast cancer (BC) is a complex disease, showing heterogeneity in the genetic background, molecular subtype, and treatment algorithm. Historically, treatment strategies have been directed towards cancer cells, but these are not the unique components of the tumor bulk, where a key role is played by the tumor microenvironment (TME), whose better understanding could be crucial to obtain better outcomes.

Methods: We evaluated mitochondrial transfer (MT) by co-culturing Adipose stem cells with different Breast cancer cells (BCCs), through MitoTracker assay, Mitoception, confocal and immunofluorescence analyses. MT inhibitors were used to confirm the MT by Tunneling Nano Tubes (TNTs). MT effect on multi-drug resistance (MDR) was assessed using Doxorubicin assay and ABC transporter evaluation. In addition, ATP production was measured by Oxygen Consumption rates (OCR) and Immunoblot analysis.

Results: We found that MT occurs via Tunneling Nano Tubes (TNTs) and can be blocked by actin polymerization inhibitors. Furthermore, in hybrid co-cultures between ASCs and patient-derived organoids we found a massive MT. Breast Cancer cells (BCCs) with ASCs derived mitochondria (ADM) showed a reduced HIF-1α expression in hypoxic conditions, with an increased ATP production driving ABC transporters-mediated multi-drug resistance (MDR), linked to oxidative phosphorylation metabolism rewiring.

Conclusions: We provide a proof-of-concept of the occurrence of Mitochondrial Transfer (MT) from Adipose Stem Cells (ASCs) to BC models. Blocking MT from ASCs to BCCs could be a new effective therapeutic strategy for BC treatment.

Keywords: Adipose Stem cells; Breast Cancer; Mitoception; Mitochondrial transfer; Multi-drug resistance; Tunneling nanotubes.

MeSH terms

  • Adipose Tissue / cytology
  • Adipose Tissue / metabolism
  • Breast Neoplasms* / drug therapy
  • Breast Neoplasms* / metabolism
  • Breast Neoplasms* / pathology
  • Cell Line, Tumor
  • Drug Resistance, Multiple*
  • Drug Resistance, Neoplasm*
  • Female
  • Humans
  • Mitochondria* / metabolism
  • Stem Cells / metabolism
  • Tumor Microenvironment