Polycystic ovary syndrome (PCOS), a common endocrine disorder affecting premenopausal women, is associated with various metabolic consequences such as insulin resistance, hyperlipidemia, obesity, and type 2 diabetes mellitus (T2DM). Insulin sensitizers, such as metformin and pioglitazone, though effective, often leads to significant gastrointestinal adverse effects or weight gain, limiting its suitability for women with PCOS. There is an urgent need for safe, effective and affordable agents. Dapagliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor, enhances glucose elimination through urine, thereby reducing body weight and improving glucose and lipid metabolism. Nevertheless, it is not currently recommended as a therapeutic option for PCOS in clinical guidelines. In this study, we systematically examined the impact of dapagliflozin on an obese PCOS mouse model, focusing on alterations in glucose metabolism, adipose tissue morphology, and plasma lipid profile. Obese PCOS was induced in mice by continuous dihydrotestosterone (DHEA) injections over 21 days and high-fat diet (HFD) feeding. PCOS mice were then orally gavaged with dapagliflozin (1 mg/kg), metformin (50 mg/kg), or vehicle daily for 8 weeks, respectively. Our results demonstrated that dapagliflozin significantly prevented body weight gain and reduced fat mass in obese PCOS mice. Meanwhile, dapagliflozin treatment improved glucose tolerance and increased insulin sensitivity compared to the control PCOS mice. Furthermore, dapagliflozin significantly improved adipocyte accumulation and morphology in white adipose tissue, resulting in a normalized plasma lipid profile in PCOS mice. In conclusion, our results suggest that dapagliflozin is an effective agent in managing glucose and lipid metabolism disorders in obese PCOS mice.
Keywords: Adipose tissue; Dapagliflozin; Glucolipid metabolism; Polycystic ovary syndrome.
Copyright © 2024 Elsevier B.V. All rights reserved.