Indian coastal waters are critical for dugong populations in the western Indian Ocean. Systematic spatial planning of dugong habitats can help to achieve biodiversity conservation and area-based protection targets in the region. In this study, we employed environmental niche modelling to predict suitable dugong habitats and identify influencing factors along its entire distribution range in Indian waters. We examined data on fishing pressures collected through systematic interview surveys, citizen-science data, and field surveys to demarcate dugong habitats with varying risks. Seagrass presence was the primary factor in determining dugong habitat suitability across the study sites. Other variables such as depth, bathymetric slope, and Euclidean distance from the shore were significant factors, particularly in predicting seasonal suitability. Predicted suitable habitats showed a remarkable shift from pre-monsoon in Palk Bay to post-monsoon in the Gulf of Mannar, indicating the potential of seasonal dugong movement. The entire coastline along the Palk Bay-Gulf of Mannar region was observed to be at high to moderate risk, including the Gulf of Mannar Marine National Park, a high-risk area. The Andaman Islands exhibited high suitability during pre- and post-monsoon season, whereas the Nicobar Islands were highly suitable for monsoon season. Risk assessment of modelled suitable areas revealed that < 15% of high-risk areas across Andaman and Nicobar Islands and Palk Bay and Gulf of Mannar, Tamil Nadu, fall within the existing protected areas. A few offshore reef islands are identified under high-risk zones in the Gulf of Kutch, Gujarat. We highlight the utility of citizen science and secondary data in performing large-scale spatial ecological analysis. Overall, identifying synoptic scale 'Critical Dugong Habitats' has positive implications for the country's progress towards achieving the global 30 × 30 target through systematic conservation planning.
Keywords: Environmental niche modelling; Habitat risk assessment; Marine mammal conservation; Marine spatial planning; Species distribution modelling.
© 2024. The Author(s).