Biologics have become increasingly prominent as therapeutics in recent years due to their innate immune-privileged nature, biocompatibility, and high levels of protein biofactors. The aim of the study is to characterise the biologic, lyophilized human placenta (LHP) and explore its therapeutic potential for osteoarthritis (OA). The presence of six bioactive constituents that regulate cell-extracellular matrix interaction was identified by liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS). Metalloproteinase inhibitor 3 (TIMP3), alpha-1 anti-trypsin (a1AT), basic fibroblast growth factor (bFGF), and transforming growth factor β1 (TGFβ1) were detected and quantified using ELISA. The total protein content present in LHP by Bradford assay was found to be 409.35 ± 0.005 μg/ml. The analytical techniques such as Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), solid state carbon-13 Nuclear Magnetic Resonance (ssC13 NMR) spectroscopy, and Differential Scanning Calorimetry (DSC) revealed the secondary structure and conformational stability of LHP. X-Ray diffraction (XRD) studies showed its amorphous nature. Bioactivity assessment of LHP was performed in human keratinocytes (HaCaT) and human dermal fibroblasts (HDF) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The LHP was highly proliferative against skin cells and non-toxic, based on the findings of the bioactivity assay. LHP has the potential to be used as a therapeutic agent for OA, as its characterisation unveiled its physical stability, significant concentration of bioactive components that are pertinent to cartilage repair and its conformational stability.
Keywords: bioactivity; characterisation; lyophilized human placenta; osteoarthritis; protein biofactors.
© 2024. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.