Drip Fertigation Enhances the Responses of Grain Yield and Quality to Nitrogen Topdressing Rate in Irrigated Winter Wheat in North China

Plants (Basel). 2024 May 22;13(11):1439. doi: 10.3390/plants13111439.

Abstract

Conventional water and nitrogen (N) management practice in north China, comprising flood irrigation and N fertilizer broadcast (FB), limits sustainable wheat production. Drip fertigation (DF) has been widely adopted in wheat production in recent years and has effectively improved yields. However, the responses of the yield and quality to the N topdressing rate (NTR) under DF are still unclear. This study determined the responses of the wheat yield and quality to NTR under DF, as well as assessing whether DF could synergistically increase the yield and quality. A field experiment was conducted in north China for two seasons (2021-2023) using a split-plot design with three replicates. The main plot used the management practice (FB and DF) and the sub-plot had N treatment (no N applied, and NTRs of 0, 40, 80, 120, and 160 kg ha-1 with 150 kg N ha-1 as basal fertilizer, denoted as N0, T0, T40, T80, T120, and T160, respectively). Our results showed that high and saturated wheat yields (12.08 and 11.46 t ha-1) were obtained under DF at T80, and the highest yields were produced at T160 (11.71 and 11.30 t ha-1) under FB. Compared with FB, the greatest yield increase of 10.4-12.6% was achieved at T80 under DF. A higher spike number due to the increased effective stem percentage and a greater grain weight because of enhanced post-anthesis biomass production (BPpost) explained the improved yield under DF. The enhanced post-anthesis radiation use efficiency (RUE) led to the greater BPpost under DF. The enhanced specific leaf N, antioxidant capacity, and stomatal conductance under DF explained the higher light-saturated photosynthesis rate of flag leaves, which partly led to the increased post-anthesis RUE. NTR higher than 80 kg ha-1 did not enhance the yield, but it significantly improved the gliadin and glutelin contents, thereby leading to a higher total protein content, better gluten characteristics, and superior processing quality. Therefore, drip fertigation is a practical strategy for increasing both yield and quality with reduced water input and appropriate N input in irrigated winter wheat in north China. Applying 80 kg ha-1 of NTR under drip irrigation produces a high yield, but further gain in grain quality needs a higher NTR.

Keywords: drip fertigation; grain quality; nitrogen topdressing rate; radiation use efficiency; wheat yield.