The stabilization of simple, highly reactive cationic species in molecular complexes represents an important strategy to isolate and characterize compounds with uncommon or even unprecedented structural motifs and properties. Here we report the synthesis, isolation, and full characterization of chlorido-bismuth dications, stabilized only by monodentate dimethylsulfoxide (dmso) ligands: [BiCl(dmso)6][BF4]2 (1) and [BiCl(μ2-dmso)(dmso)4]2[BF4]4 (2). These compounds show unusual distorted pentagonal bipyramidal coordination geometries along with high Lewis acidities and have been analyzed by multinuclear NMR spectroscopy, elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, and density functional theory calculations. Attempts to generate the bromido- and iodido-analogs gave dmso-stabilized tricationic bismuth species.