Purpose: Recent studies have shown that the retinal pigment epithelium (RPE) relies on fatty acid oxidation (FAO) for energy, however, its role in overall retinal health is unknown. The only FAO disorder that presents with chorioretinopathy is long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). Studying the molecular mechanisms can lead to new treatments for patients and elucidate the role of FAO in the RPE. This paper characterizes the chorioretinopathy progression in a recently reported LCHADD mouse model.
Methods: Visual assessments, such as optokinetic tracking and fundus imaging, were performed in wildtype (WT) and LCHADD mice at 3, 6, 10, and 12 months of age. Retinal morphology was analyzed in 12-month retinal cross-sections using hematoxylin and eosin (H&E), RPE65, CD68, and TUNEL staining, whereas RPE structure was assessed using transmission electron microscopy (TEM). Acylcarnitine profiles were measured in isolated RPE/sclera samples to determine if FAO was blocked. Bulk RNA-sequencing of 12 month old male WT mice and LCHADD RPE/sclera samples assessed gene expression changes.
Results: LCHADD RPE/sclera samples had a 5- to 7-fold increase in long-chain hydroxyacylcarnitines compared to WT, suggesting an impaired LCHAD step in long-chain FAO. LCHADD mice have progressively decreased visual performance and increased RPE degeneration starting at 6 months. LCHADD RPE have an altered structure and a two-fold increase in macrophages in the subretinal space. Finally, LCHADD RPE/sclera have differentially expressed genes compared to WT, including downregulation of genes important for RPE function and angiogenesis.
Conclusions: Overall, this LCHADD mouse model recapitulates early-stage chorioretinopathy seen in patients with LCHADD and is a useful model for studying LCHADD chorioretinopathy.