Among tetrapod (terrestrial) vertebrates, amphibians remain more closely tied to an amphibious lifestyle than amniotes, and their visual opsin genes may be adapted to this lifestyle. Previous studies have discussed physiological, morphological, and molecular changes in the evolution of amphibian vision. We predicted the locations of the visual opsin genes, their neighboring genes, and the tuning sites of the visual opsins, in 39 amphibian genomes. We found that all of the examined genomes lacked the Rh2 gene. The caecilian genomes have further lost the SWS1 and SWS2 genes; only the Rh1 and LWS genes were retained. The loss of the SWS1 and SWS2 genes in caecilians may be correlated with their cryptic lifestyles. The opsin gene syntenies were predicted to be highly similar to those of other bony vertebrates. Moreover, dual syntenies were identified in allotetraploid Xenopus laevis and X. borealis. Tuning site analysis showed that only some Caudata species might have UV vision. In addition, the S164A that occurred several times in LWS evolution might either functionally compensate for the Rh2 gene loss or fine-tuning visual adaptation. Our study provides the first genomic evidence for a caecilian LWS gene and a genomic viewpoint of visual opsin genes by reviewing the gains and losses of visual opsin genes, the rearrangement of syntenies, and the alteration of spectral tuning in the course of amphibians' evolution.
Keywords: Amphibian; Chromosome synteny; Color vision; Evolution; Gene duplication; Gene loss.
Copyright © 2024 Elsevier Ltd. All rights reserved.