We analyze the entropy production in run-and-tumble models. After presenting the general formalism in the framework of the Fokker-Planck equations in one space dimension, we derive some known exact results in simple physical situations (free run-and-tumble particles and harmonic confinement). We then extend the calculation to the case of anisotropic motion (different speeds and tumbling rates for right- and left-oriented particles), obtaining exact expressions of the entropy production rate. We conclude by discussing the general case of heterogeneous run-and-tumble motion described by space-dependent parameters and extending the analysis to the case of d-dimensional motions.
Keywords: active matter; entropy production; exact results; non-equilibrium; run-and-tumble motion.