Klebsiella pneumoniae (K. pneumoniae) is a major cause of healthcare-associated infections and plays a prominent role in the widespread antibiotic resistance crisis. Accurate identification of carbapenemases is essential to facilitate effective antibiotic treatment and reduce transmission of K. pneumoniae. This study aimed to detect carbapenemase production in carbapenem-resistant K. pneumoniae strains using phenotypic and genotypic methods. A total of 67 carbapenem-resistant K. pneumoniae strains obtained from various clinical samples were utilized for identification and antimicrobial susceptibility by the Vitek 2 Compact system (Biomerieux, France). Carbapenemase production was determined by using the Polymerase chain reaction, Blue-carba test (BCT) and Carbapenem inactivation method (CIM). Out of the isolates, 59 (88.1%) were positive bla OXA-48, 16 (23.9%) bla IMP, and five (7.5%) were positive bla NDM. No bla KPC genes were detected. The CIM identified 62 (92.5%), BCT identified 63 (94%) of PCR-positive isolates. The sensitivity and specificity of the BCT and the CIM were determined to be 96.7%, 40%, and 96.7%, 25% respectively. The bla OXA-48 gene was found to be the most prevalent in K. pneumoniae isolates. Early identification of carbapenem resistance plays a vital role in designing effective infection control strategies and mitigating the emergence and transmission of carbapenem resistance, thus reducing healthcare-associated infections.