The present work was designed to synthesize Ag2O-supported MgO/rGO nanocomposites (NCs) via green method using Phoenix leaf extract for improved photocatalytic and anticancer activity. Green synthesized Ag2O-supported MgO/rGO NCs were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Raman, ultraviolet-visible (UV-vis) spectroscopy, and photoluminescence (PL) spectroscopy, and gas chromatography-mass spectroscopy (GC-MS) was applied to examine the chemical components of the Phoenix leaf extract. Characterization data confirmed the preparation of MgO NPs, Ag2O-MgO NCs, and Ag2O-MgO/rGO NC with particle size of 26-28 nm. UV-vis study exhibited that the band gap energy of MgO NPs, Ag2O-MgO NCs, and Ag2O-MgO/rGO NC were in the range of 3.53-3.43 eV. The photocatalytic results showed that the photodegradation of Rh B dye of Ag2O-supported MgO/rGO NCs (82.81%) was significantly higher than pure MgO NPs. Additionally, the biological response demonstrates that the Ag2O-supported MgO/rGO NCs induced high cytotoxicity against MCF-7 cancer cells for 24 h and 48 h compared with both pure MgO NPs and Ag2O-MgO NCs. This study suggests that the adding of Ag2O and rGO sheets played significant role in the enhanced photocatalytic and anticancer performance of MgO NPs.
Keywords: Biomedical application; Environmental remediation; Graphene-based nanocomposites; Green synthesis; Rhodamine B (Rh B).
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.