The avoidance of allergen intake is crucial for persons affected by peanut allergy; however, the cross-contamination of food is common and leads to unpredictable consequences after the consumption of supposedly "safe" food. The aim of the present study was to eliminate harmful traces of peanut allergens from food using purified clinoptilolite-tuff (PCT)-a specially processed zeolite material. Analyses were performed using a peanut ELISA and a Coomassie blue (Bradford) assay. Mimicking conditions of the human gastrointestinal tract demonstrated a higher efficacy of PCT in the intestine (pH 6.8) than in the stomach (pH 1.5). Adsorption rates were fast (<2 min) and indicated high capacities (23 µg and 40 µg per 1 mg of PCT at pH 1.5 and pH 6.8, respectively). Allergenically relevant peanut protein concentrations were sorbed in artificial fluids (32 µg/mL by 4 mg/mL of PCT at pH 1.5 and 80.8 µg/mL by 0.25 mg/mL of PCT at pH 6.8) when imitating a daily dose of 2 g of PCT in an average stomach volume of 500 mL. Experiments focusing on the bioavailability of peanut protein attached to PCT revealed sustained sorption at pH 1.5 and only minor desorption at pH 6.8. Accompanied by gluten, peanut proteins showed competing binding characteristics with PCT. This study therefore demonstrates the potential of PCT in binding relevant quantities of peanut allergens during the digestion of peanut-contaminated food.
Keywords: ELISA (enzyme-linked immunosorbent assay); adsorption; artificial fluids; dietary allergies; gastrointestinal tract; gliadin; gluten; peanut allergy; purified clinoptilolite; zeolite.