Progesterone regulates tissue non-specific alkaline phosphatase (TNSALP) expression and activity in ovine utero-placental tissues

J Anim Sci Biotechnol. 2024 Jul 3;15(1):90. doi: 10.1186/s40104-024-01048-x.

Abstract

Background: Tissue non-specific alkaline phosphatase (TNSALP; encoded by the ALPL gene) has a critical role in the postnatal regulation of phosphate homeostasis, yet how TNSALP activity and expression are regulated during pregnancy remain largely unknown. This study tested the hypothesis that progesterone (P4) and/or interferon tau (IFNT) regulate TNSALP activity during pregnancy in sheep.

Methods: In Exp. 1, ewes were bred and received daily intramuscular injections of either corn oil vehicle (CO) or 25 mg progesterone in CO (P4) for the first 8 days of pregnancy and were hysterectomized on either Day 9, 12, or 125 of gestation. In Exp. 2, ewes were fitted with intrauterine catheters on Day 7 of the estrous cycle and received daily intramuscular injections of 50 mg P4 in CO and/or 75 mg progesterone receptor antagonist (RU486) in CO from Days 8 to 15, and twice daily intrauterine injections of either control proteins (CX) or IFNT (25 µg/uterine horn/d) from Days 11 to 15 (treatment groups: P4 + CX; P4 + IFNT; RU486 + P4 + CX; and RU486 + P4 + IFNT) and were hysterectomized on Day 16.

Results: In Exp. 1, endometria from ewes administered P4 had greater expression of ALPL mRNA than ewes administered CO on Day 12. TNSALP activity appeared greater in the epithelia, stratum compactum stroma, and endothelium of the blood vessels in the endometrium and myometrium from ewes administered P4 than ewes administered CO on Day 12. On Day 125, TNSALP activity localized to uterine epithelial and endothelial cells, independent of P4 treatment. TNSALP activity in placentomes appeared greater in P4 treated ewes and was detected in endothelial cells and caruncular tissue in P4 treated but not CO treated ewes. In Exp. 2, endometrial homogenates from ewes administered RU486 + P4 + CX had lower TNSALP activity those for P4 + CX and P4 + IFNT ewes. Immunoreactive TNSALP protein appeared greater in the mid- and deep-glandular epithelia in RU486 + P4 + CX treated ewes as compared to the other treatment groups. Enzymatic activity appeared greater on the apical surface of the deep glandular epithelia in endometria from ewes treated with RU486 + P4 + CX compared to the other treatment groups.

Conclusions: These results suggest that P4, but not IFNT, regulates the expression and activity of TNSALP in utero-placental tissues and has the potential to contribute to the regulation of phosphate availability that is critical for conceptus development during pregnancy.

Keywords: Alkaline phosphatase; Phosphate; Placenta; Sheep; Uterus.